

ABOVE-GROUND FIRE HYDRANT type NH2

<Two in one = hydrant + isolating pre-valve>

<Dual reliability = possibility of use (closing from below) even when the regular closing (from above) is malfunctioning>

<high flow rate ($K_v = 278 \text{ m}^3/\text{h}$) = less fire damage>

Basic technical characteristics:

*Safe = compliant with the requirements of the standard EN 14384 = CE

*Purpose: Using water from underground pipelines for fire fighting and communal needs

*See "Procurement Data" P1/2

*Flow: $K_v = 278 \text{ m}^3/\text{h}$, for $D_i = 2x65$

*Moment of activation MOT: max 45Nm, (Class 1)

*Moment of breakage (at point 4.1) due to force F $M = 7500 \text{ Nm}$

*Foundation

*Weight ~ (65÷76) daN for H_i (1350÷1850) mm

Materials:

- hydrant body castings nodular cast,
- cap, and output couplings aluminium,
- pipe of body, spindle, and obturator seat stainless steel,
- sealants polypropylene/elastomers,

Advantages:

* Two ways of use = dual reliability

- closing with the main valve (3), from above (regular work),
- closing with a pre-valve (2), from below (extraordinary work),

* Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:

- that the other hydrants remain in operation even when the main valve (3) malfunction,
- automatic stop of water flow, in case of breakage (4.1) due to force F ,
- to omit a separate isolation valve in front of the hydrant,
- lower cost of construction and maintenance of the hydrant network,
- the use of a hydrant even the main valve (3) is malfunction.

* Large flow: ($K_v = 278 \text{ m}^3/\text{h}$, for $D_i = 2x65$); less fire damage.

* Control valve (7) = great safety of the executor, prevention of hydrant freezing.

* Prevented damage to the supply pipeline = breakage at point 4.1, due to force F .

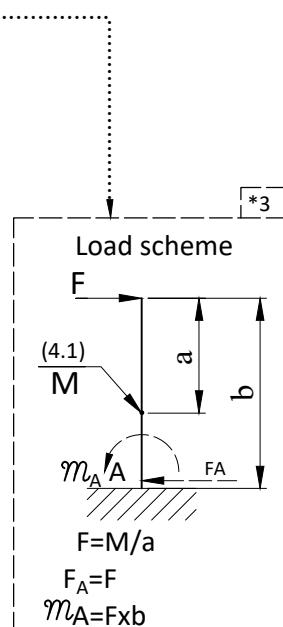
* Activation without additional tools, by turning the cap (5).

* Easy activation: (class 1, MOT < 45 Nm) longer service life.

* Possibility of blocking (6) unauthorized use.

* High reliability of closing; impermeability even after 1000 closings.

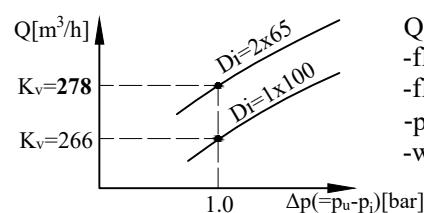
* Outlets tilted (25°) down, longer service life of fire hoses.


* The main valve seal is conical, self-flushing = dirt retention prevented = longer service life.

* Very easy hydrant maintenance:

- Replacing the main valve seal (3); without digging up the ground and without dismantling the body (4).
- The threaded part of the closure (3.1) is outside the flow of water, permanently lubricated maintenance-free throughout its working life.
- Possibility (7) of checking the correctness of the drain and main valve.
- Repair of the drainage valve (10.1); from the outside, partial excavation, without dismantling the hydrant.

* Long warranty period (5 years).


* Probably the best, and the most economical hydrant available.

Documents accompanying the delivery of hydrant:

*Declaration of Performance

*Instruction for safety work (installation, handling, inspection, maintenance, warranty)

$$Q = K_v \times (1000 \Delta p / \rho)^{1/2}$$

- flow Q [m^3/h]
- flow coefficient K_v [m^3/h]
- pressure difference Δp [bar]
- water density ρ [kg/m^3]

